【机器学习】集成学习代码练习(随机森林、GBDT、XGBoost、LightGBM等)
本文是中国大学慕课《机器学习》的“集成学习”章节的课后代码。课程地址:https: www icourse163 org course WZU-1464096
2022-12-22 11:32:10
本文是中国大学慕课《机器学习》的“集成学习”章节的课后代码。
(资料图片仅供参考)
课程地址:
https://www.icourse163.org/course/WZU-1464096179
课程完整代码:
https://github.com/fengdu78/WZU-machine-learning-course
代码修改并注释:黄海广,haiguang2000@wzu.edu.cn
importwarningswarnings.filterwarnings("ignore")importpandasaspdfromsklearn.model_selectionimporttrain_test_split生成数据
生成12000行的数据,训练集和测试集按照3:1划分
fromsklearn.datasetsimportmake_hastie_10_2data,target=make_hastie_10_2()
X_train,X_test,y_train,y_test=train_test_split(data,target,random_state=123)X_train.shape,X_test.shape
((9000, 10), (3000, 10))模型对比
对比六大模型,都使用默认参数
fromsklearn.linear_modelimportLogisticRegressionfromsklearn.ensembleimportRandomForestClassifierfromsklearn.ensembleimportAdaBoostClassifierfromsklearn.ensembleimportGradientBoostingClassifierfromxgboostimportXGBClassifierfromlightgbmimportLGBMClassifierfromsklearn.model_selectionimportcross_val_scoreimporttimeclf1=LogisticRegression()clf2=RandomForestClassifier()clf3=AdaBoostClassifier()clf4=GradientBoostingClassifier()clf5=XGBClassifier()clf6=LGBMClassifier()forclf,labelinzip([clf1,clf2,clf3,clf4,clf5,clf6],["LogisticRegression","RandomForest","AdaBoost","GBDT","XGBoost","LightGBM"]):start=time.time()scores=cross_val_score(clf,X_train,y_train,scoring="accuracy",cv=5)end=time.time()running_time=end-startprint("Accuracy:%0.8f (+/-%0.2f),耗时%0.2f秒。模型名称[%s]"%(scores.mean(),scores.std(),running_time,label))
Accuracy: 0.47488889 (+/- 0.00),耗时0.04秒。模型名称[Logistic Regression]Accuracy: 0.88966667 (+/- 0.01),耗时16.34秒。模型名称[Random Forest]Accuracy: 0.88311111 (+/- 0.00),耗时3.39秒。模型名称[AdaBoost]Accuracy: 0.91388889 (+/- 0.01),耗时13.14秒。模型名称[GBDT]Accuracy: 0.92977778 (+/- 0.00),耗时3.60秒。模型名称[XGBoost]Accuracy: 0.93188889 (+/- 0.01),耗时0.58秒。模型名称[LightGBM]
对比了六大模型,可以看出,逻辑回归速度最快,但准确率最低。而LightGBM,速度快,而且准确率最高,所以,现在处理结构化数据的时候,大部分都是用LightGBM算法。
XGBoost的使用 1.原生XGBoost的使用importxgboostasxgb#记录程序运行时间importtimestart_time=time.time()#xgb矩阵赋值xgb_train=xgb.DMatrix(X_train,y_train)xgb_test=xgb.DMatrix(X_test,label=y_test)##参数params={"booster":"gbtree",#"silent":1,#设置成1则没有运行信息输出,最好是设置为0.#"nthread":7,#cpu线程数默认最大"eta":0.007,#如同学习率"min_child_weight":3,#这个参数默认是1,是每个叶子里面h的和至少是多少,对正负样本不均衡时的0-1分类而言#,假设 h 在0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100个样本。#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。"max_depth":6,#构建树的深度,越大越容易过拟合"gamma":0.1,#树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。"subsample":0.7,#随机采样训练样本"colsample_bytree":0.7,#生成树时进行的列采样"lambda":2,#控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。#"alpha":0,#L1正则项参数#"scale_pos_weight":1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。#"objective":"multi:softmax",#多分类的问题#"num_class":10,#类别数,多分类与multisoftmax并用"seed":1000,#随机种子#"eval_metric":"auc"}plst=list(params.items())num_rounds=500#迭代次数watchlist=[(xgb_train,"train"),(xgb_test,"val")]
#训练模型并保存#early_stopping_rounds当设置的迭代次数较大时,early_stopping_rounds可在一定的迭代次数内准确率没有提升就停止训练model=xgb.train(plst,xgb_train,num_rounds,watchlist,early_stopping_rounds=100,)#model.save_model("./model/xgb.model")#用于存储训练出的模型print("bestbest_ntree_limit",model.best_ntree_limit)y_pred=model.predict(xgb_test,ntree_limit=model.best_ntree_limit)print("error=%f"%(sum(1foriinrange(len(y_pred))ifint(y_pred[i]>0.5)!=y_test[i])/float(len(y_pred))))#输出运行时长cost_time=time.time()-start_timeprint("xgboostsuccess!","\n","costtime:",cost_time,"(s)......")
[0]train-rmse:1.11000val-rmse:1.10422[1]train-rmse:1.10734val-rmse:1.10182[2]train-rmse:1.10465val-rmse:1.09932[3]train-rmse:1.10207val-rmse:1.09694
……
[497]train-rmse:0.62135val-rmse:0.68680[498]train-rmse:0.62096val-rmse:0.68650[499]train-rmse:0.62056val-rmse:0.68624best best_ntree_limit 500error=0.826667xgboost success! cost time: 3.5742645263671875 (s)......2.使用scikit-learn接口
会改变的函数名是:
eta -> learning_rate
lambda -> reg_lambda
alpha -> reg_alpha
fromsklearn.model_selectionimporttrain_test_splitfromsklearnimportmetricsfromxgboostimportXGBClassifierclf=XGBClassifier(# silent=0, #设置成1则没有运行信息输出,最好是设置为0.是否在运行升级时打印消息。#nthread=4,#cpu线程数默认最大learning_rate=0.3,#如同学习率min_child_weight=1,#这个参数默认是1,是每个叶子里面h的和至少是多少,对正负样本不均衡时的0-1分类而言#,假设 h 在0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100个样本。#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。max_depth=6,#构建树的深度,越大越容易过拟合gamma=0,#树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。subsample=1,#随机采样训练样本训练实例的子采样比max_delta_step=0,#最大增量步长,我们允许每个树的权重估计。colsample_bytree=1,#生成树时进行的列采样reg_lambda=1,#控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。#reg_alpha=0,#L1正则项参数#scale_pos_weight=1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。平衡正负权重#objective="multi:softmax",#多分类的问题指定学习任务和相应的学习目标#num_class=10,#类别数,多分类与multisoftmax并用n_estimators=100,#树的个数seed=1000#随机种子#eval_metric="auc")clf.fit(X_train,y_train)y_true,y_pred=y_test,clf.predict(X_test)print("Accuracy:%.4g"%metrics.accuracy_score(y_true,y_pred))
Accuracy : 0.936LIghtGBM的使用 1.原生接口
importlightgbmaslgbfromsklearn.metricsimportmean_squared_error#加载你的数据#print("Loaddata...")#df_train=pd.read_csv("../regression/regression.train",header=None,sep="\t")#df_test=pd.read_csv("../regression/regression.test",header=None,sep="\t")##y_train=df_train[0].values#y_test=df_test[0].values#X_train=df_train.drop(0,axis=1).values#X_test=df_test.drop(0,axis=1).values#创建成lgb特征的数据集格式lgb_train=lgb.Dataset(X_train,y_train)#将数据保存到LightGBM二进制文件将使加载更快lgb_eval=lgb.Dataset(X_test,y_test,reference=lgb_train)#创建验证数据#将参数写成字典下形式params={"task":"train","boosting_type":"gbdt",#设置提升类型"objective":"regression",#目标函数"metric":{"l2","auc"},#评估函数"num_leaves":31,#叶子节点数"learning_rate":0.05,#学习速率"feature_fraction":0.9,#建树的特征选择比例"bagging_fraction":0.8,#建树的样本采样比例"bagging_freq":5,#k意味着每k次迭代执行bagging"verbose":1#<0显示致命的,=0显示错误(警告),>0显示信息}print("Starttraining...")#训练cvandtraingbm=lgb.train(params,lgb_train,num_boost_round=500,valid_sets=lgb_eval,early_stopping_rounds=5)#训练数据需要参数列表和数据集print("Savemodel...")gbm.save_model("model.txt")#训练后保存模型到文件print("Startpredicting...")#预测数据集y_pred=gbm.predict(X_test,num_iteration=gbm.best_iteration)#如果在训练期间启用了早期停止,可以通过best_iteration方式从最佳迭代中获得预测#评估模型print("error=%f"%(sum(1foriinrange(len(y_pred))ifint(y_pred[i]>0.5)!=y_test[i])/float(len(y_pred))))
Start training...[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000448 seconds.You can set `force_col_wise=true` to remove the overhead.[LightGBM] [Info] Total Bins 2550[LightGBM] [Info] Number of data points in the train set: 9000, number of used features: 10[LightGBM] [Info] Start training from score 0.012000[1]valid_0"s auc: 0.814399valid_0"s l2: 0.965563Training until validation scores don"t improve for 5 rounds[2]valid_0"s auc: 0.84729valid_0"s l2: 0.934647[3]valid_0"s auc: 0.872805valid_0"s l2: 0.905265[4]valid_0"s auc: 0.884117valid_0"s l2: 0.877875[5]valid_0"s auc: 0.895115valid_0"s l2: 0.852189
……
[191]valid_0"s auc: 0.982783valid_0"s l2: 0.319851[192]valid_0"s auc: 0.982751valid_0"s l2: 0.319971[193]valid_0"s auc: 0.982685valid_0"s l2: 0.320043Early stopping, best iteration is:[188]valid_0"s auc: 0.982794valid_0"s l2: 0.319746Save model...Start predicting...error=0.6640002.scikit-learn接口
fromsklearnimportmetricsfromlightgbmimportLGBMClassifierclf=LGBMClassifier(boosting_type="gbdt",#提升树的类型gbdt,dart,goss,rfnum_leaves=31,#树的最大叶子数,对比xgboost一般为2^(max_depth)max_depth=-1,#最大树的深度learning_rate=0.1,#学习率n_estimators=100,#拟合的树的棵树,相当于训练轮数subsample_for_bin=200000,objective=None,class_weight=None,min_split_gain=0.0,#最小分割增益min_child_weight=0.001,#分支结点的最小权重min_child_samples=20,subsample=1.0,#训练样本采样率行subsample_freq=0,#子样本频率colsample_bytree=1.0,#训练特征采样率列reg_alpha=0.0,#L1正则化系数reg_lambda=0.0,#L2正则化系数random_state=None,n_jobs=-1,silent=True,)clf.fit(X_train,y_train,eval_metric="auc")#设置验证集合verbose=False不打印过程clf.fit(X_train,y_train)y_true,y_pred=y_test,clf.predict(X_test)print("Accuracy:%.4g"%metrics.accuracy_score(y_true,y_pred))
Accuracy : 0.927参考
1.https://xgboost.readthedocs.io/
2.https://lightgbm.readthedocs.io/
3.https://blog.csdn.net/q383700092/article/details/53763328?locationNum=9&fps=1
往期精彩回顾适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑机器学习交流qq群955171419,加入微信群请扫码
本文是中国大学慕课《机器学习》的“集成学习”章节的课后代码。课程地址:https: www icourse163 org course WZU-1464096
职工因工致残被鉴定为七级至十级伤残的,享受以下待遇:(一)从工伤保险基金按伤残等级支付一次性伤残补助金,标准为:七级伤残为13个月的本
四川:力争2025年电能占终端能源消费比重达到30%左右2022年12月21日16:20四川新闻网作者:王若晔
编程客栈()12月21日消息:快手发布了关于欺骗诱导行为的处罚公告第十三期内容,本次平台共处置此类违规账号43编程88个。公告称,近期,平台发
加入PolkaWorld社区,共建Web3 0!钱包是区块链生态的入口,一个好用的钱包可以让人你轻松地管理自己的资产,并与生态中的项目交互。在“波卡生
网贷逾期一般会上征信,有些借贷机构在用户逾期后一天后就会上报给征信机构,而有些借贷机构则是会在几天后上报给征信机构,因为有些借贷机构可
截至2022年12月19日收盘,双环传动(002472)报收于26 34元,上涨2 85%,换手率1 83%,成交量12 51万手,成交额3 33亿元。12月1
自学初级会计提高效率方法:1、做题的过程中要认真看书,将书本内容和题目结合起来看,把教材上一些比较重点的内容着重看一遍。2、在做题的过
截至2022年12月19日收盘,*ST荣华(600311)报收于1 35元,下跌4 26%,换手率1 77%,成交量11 78万手,成交额1603 7万元。
你是办公室的哪棵葱商场如战场,办公室里也是一样,想要在办公室里可持续发展下去,就得先给自己定位一个最适合的角色。每天上下班,你都会饱
11月8日上午,浉河区东双河镇王店村阳光明媚,冯文敏跑去喊来村民张家财,一起给蟹田“清塘底”。2020年,姚先群和冯文敏夫妇从江苏省泰州市兴
人身损害赔偿和解协议满足以下条件就有效:(一)行为人具有相应的民事行为能力。(二)意思表示真实。(三)不违反法律、行政法规的强制性规定,不
图为启动仪式现场。作者宋秀杰摄图为启动仪式现场。作者宋秀杰摄中新网广东新闻6月9日电(记者宋秀杰)“用档案讲好党的故事,用档案见证时代发
智通财经APP讯,白云山发布公告,2022年股份转让合同下售股权股份转让的完成的所有先决条件已达成且已于2022年12月15日完成。售股权股份转让完
截至2022年12月16日收盘,安德利(605198)报收于21 38元,上涨3 04%,换手率3 75%,成交量3 14万手,成交额6594 6万元。12月1